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Abstract 

We investigate the  problem of  using quaternionic  scalar fields as Higg's mesons  in theories 
of  spontaneously  broken symmetries .  We are led to the  symptect ic  Sp(1, Q) @ U(1) as a 
possible gauge group for a unified theory  of electromagnetic and weak interactions.  The 
features of  this model  are worked out  and compared with those  of  Weinberg's  SU(2) @ 
U(1) model.  

1. Introduction 

Analogous to the real and complex scalar fields which obey the usual Klein- 
Gordon equation, Finketstein et aL (1962, 1963)have considered the desir- 
ability of employing quaternionic scalar wave functions and fields in reformula- 
tions of quantum mechanics and field theory. The elegance achieved encourages 
one to exploit their ideas, in order to construct viable theories of spontaneous 
symmetry breaking in which one expects to obtain a more economical unified 
description of electromagnetic and weak interactions. 

Titus consider the real and complex free scalar fields ~(x), which obey the 
Klein-Gordon equation 

([] + m 2 ) ~ ( x )  = 0 

and have the following Lagrangians: 

2a = ½ {(Ou~) 2 - m2~ 2} 

and 

respectively, where 
1 - i  

~I = ~ (~ + ~t), ~z = ~ (~ _ ~t) 

Vz VZ 
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One could consider these fields in self-interaction and include a ¢4 term. For the 
complex scalar field we write 

.go = ~u¢tau¢ _ F(¢t¢) (1.1) 

Where 

v(¢t¢)  = ~2¢,¢ + x(¢,¢)2 

It is a well-known elementary result that this Lagrangian is invariant under the 
V(1) transformation: 

¢(x) -+ e - % ( x ) ,  ~ :/: ~(x) 

If a = c~(x), invariance may be restored using the new Lagrangian 

= (Dv¢)t (Dv¢) - v(¢t¢) (1.2) 

where 

D.  = ~ - i eA.  

and A~, is a gauge field that is arbitrary up to the transformation 

A .  -~ A .  - (1 /e )aua(x)  

A free massless gauge field Lagrangian of  the form 

may be added to equation (1.2), where 

Fur = auA v - auAt, 

Now in the thoroughly studied process of spontaneous symmetry breaking, 
if we set 3 V / ~ ¢  = 0 and look for nontrivial solutions, we get for p2 < 0 and 
X > 0  

¢j'¢ = ¢12 + 922 -- __/,/2/• = U2 

which can be satisfied by the arbitrary choice 

¢1 = v, So 2 = 0 

Quantum mechanically one writes 

(0 1¢1(x) I0) = v, <01¢2(x)10>= 0 

The fields ¢i may be redefined by writing 

X1 = 91 - v, X2 = 92 (1.3) 

so that 

(o l  x l ( x ) I  o> = (0 I,x:(x)IO> = o 

The popular Kibble-Higgs mechanism, so skilfully exploited in the construc- 
tion of  the Weinberg prototype gauge models, is that if we substitute equation 
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(1.3) into equation (1.1) we end up having one massless spin-zero particle X2, 
which is the Goldstone bosom On the other hand, if the substitution is into 
equation (1.2) rather than equation (I .1), we find that the Goldstone boson is 
absent. In its place, a massive gauge field appears. This result is readily obtained 
if instead of using equation (1.3) we parametrize ~(x) in the so-called unitary 
gauge 

~(x)  = (1/X/2)[XI(x) + v] exp [-ix2(x)] (1.4) 

and then substitute (1.4) into equations (1.1) and (t.2). 

2. Quaternionie Higg's Meson 

In place of the real or complex scalar field, we could introduce the following 
quaternionic scalar field ~v(x) defined by 

~o(x) = eo~o(X ) + el ~Ol(X ) + e2~o~(x ) + e3~03(x ) (2.1) 

where the quaternion units e i obey the usual relations 

ei 2 = - c o ,  eieo = eoe i = %  i = 1 , 2 , 3  

Also 

e l e  2 = --e2e 1 =e3~ e2e 3 = --e3e 2 = e l ,  e3e 1 = - - e l c  3 = e 2 

The component fields ~i, (i = 0, t, 2, 3) may be real or complex scalar fields. We 
shall consider only the case of real components in this section. The quaternionic 
conjugate field ~oe(x) is defined by 

~e(x) = eo~vo(x) - elqol(X ) - -  e=~=(x) - e 3~a(x) (2.1a) 

It is known that the quaternionic units can be represented by Pauli matrices 
as follows: 

e ° - + ( ;  ~) '  e l ~ ( ;  Oi), e 2 - + ( ~ - ; ) ,  e3-+(_~ -0)  

This enables us to calculate where necessary, with the following matrix form 
of a quatemion: 

 c(x) = Xx /  

Where X1 = ~o + i~1 and X2 = ~2 + i~3; X] and X~ are complex conjugates. 
We will evaluate traces at appropriate places using, for example, 

½Vr(~C~) = X~X, + X~X2 

Obviously, the quaternionic scalar field obeys the Klein-Gordon equation. 
The free-field Lagrangian can be written as 

;LP = Tr (Ou~c~u~) - / lZTr  (~pg) 
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We could include a self-interaction term and write 

where 

V(~pc~p) = u2Tr (~oc~o) + XTr (~oe~o) 2 (2.2) 

This Lagrangian (2.2) is seen to be invariant under the symplectic Sp(1, Q) 
transformation (Gourdin, 1967) 

~(x) -* ~-%(x)  
(2.3) 

~ ( x )  ~ ~%+~ 

where 

/3=e1~ 1 +~2~2 +e30~ 3 

Here the ei(i = 1,2,  3) are again the quaternion units. Equation (2.3) is a simple 
generalization of the phase transformation ~ -+ e-i°~o for a complex scalar field. 
The parameters c~ i are real e numbers with a i v a ai(x). 

If we let the parameters c~ i become functions of  x so that/3 = jJ(x), we could 
restore invariance of  equation (2.2) under (2.3), by the usual minimal substitution 
principle. We replace equation (2.2) by 

where 

with 

We have the gauge freedom 

= ( G ~ )  ~ ( G ~ )  - v(~ '~)  

G = Ou - g G  

3 

f=l 

A j  ~ & i  _ (1/g)~.c~i(x) 

(2.4) 

G -~ G - (~/gG/3(x)  

The new Lagrangian is 

cp = [(3u _ gQu)~] c .  [(3u _ gQ)@] _ V(~9)  

= ~ . ~ % ~  _ g~CQC~.~ _ g O f ) Q . ~  + g 2 ~ Q ¢ ' G ~  ........ v(~c~) (2.6) 

One can verify that this Lagrangian (2.6) is invariant under local gauge 
Sp(1, Q) transformations. A generalization of  well-known results (Abers and 
Lee, 1973) for the transformation law of  the gauge field ('¢. A) under a non- 

or (2.s) 
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Abelian local gauge group G, leads to the following transformation law for 
Qu under local gauge Sp(1,  Q): 

Q,z -+ Q'~ = e-:JQue ~ - ( I /g)e-~(3M3)e~ (2.7) 

Taking the quaternionic conjugate, we write 

Q S  -+ (Que) ' = e~Qu Ceil + (I/g)e-~(aufi)e ~ (2.8) 

One can now check that equation (2.6) is in.variant under the set of local gauge 
transformations (2.3) and (2.7). 

To the Lagrangian (2.6), we have to add the free field Lagrangian for the 
quatemionic vector field Qu" The form of ~ ( Q u )  has to be chosen such that it 
is separately invariant under equation (2.7). After a lengthy algebra, one verifies 
that the following form can be chosen for £°(Qu): 

c/,(Qu)= ] - e -aFuv/'~v (2.9) 

where 

Fur = -(3uQ,: - 3yOu) + g [Qu, Qu]- + ( l / g ) [ ~ ,  3vfi]_ 

FL = - ( a . O :  - a . O : ) - g  [0:,  0 : 1 _  - ( l / g ) G ~ ,  a~]- 
(The last term in this equation may in fact be dropped, since it is of  second order 
in the gauge transformation parameter t3.) 

Having now constructed the Lagrangians (2.6) and (2.9), which are separately 
invariant under local gauge Sp(1, Q) transformations, we can consider breaking 
the symmetry spontaneously. We have 

v(:~:) = ~2:,,: + x(:~:)= 
so that 

v / ~ :  = o 

implies 

: %  = _ . 2 / X  

Requiring as usual that/~2 < 0, X > 0, we can choose 

< o I :o(X) t o> = - . = / x  = 

(Ol:i(x)tO> = O, i = 1, 2, 3 

We introduce the field X(x) defined by 

x(x)  = :o (x )  - 

such that 

(Of x IO) = 0 

In the so-called unitary gauge, we can now parametrize the quaternion field 
~4x) by 

: ( x )  = pe -~(x) 
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3 

~(x) = E e, sq(x) 
i = I  

and 

p(x)=(1/x ,~)[x(x)+~l  (2.10) 

We can now choose a particular gauge in equation (2.8) such that the ~(x) 
field in equation (2.10) drops out. The net result is equivalent to simply 
substituting 

~(x) = p(x) = (1/X/2)[X(x) + ~/1 (2.11) 

into the Lagrangian (2.6). We obtain the following result (after taking traces): 

~ =  ~ .pa .p  + 2g=p 2 {(A.~) 2 + ( A J  + i A d ) ( A .  ~ - l a d ) }  

_ u 2 p 2  _ x p  4 + ~ ( Q . )  

= ½0uXauX +gZ(x2 + 2~/X + ~/2) [(Wu°)2 + Wu+Wu -] 

- ¼XX 4 - M / X  3 - M12X 2 + d~(Qu) (2.12) 

We see that, as expected, three massive vector mesons Wu °, Wu +, and W~- have 
emerged. 

Further generalizations of these results are now possible. In place of the 
quaternionic scalar field ¢(x), one could use a generalized hypercomplex 
scalar field (Ndili and Chukwumah 1974). The manipulations as discussed 
above carry through, but the algebra is more tedious. We suppress the details. 

3. Quaternionie Spinor Field 

We could next introduce the quaternionic spinor field defined by 

•(x) = eo¢o(X)+ el ¢l(x) + e2¢2(x) + e3¢3(x) 

with 

~C(x) = eoG(X)  - e l G ( x )  - e2G(x)  - e 3 G ( x )  

where the ~{i = 0, 1, 2, 3) are spinor fields. 
In matrix form we write 

~(x) = ~2 - i~3 ¢o - i01 ] 

[ 
! 

~ - ( G  - iG)  G + i G  ] 
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The free massless Lagrangian for this quaternionic spinor field is given by 

£o= ½Tr(~CTxO~,~) 

3 

i = 0  

This Lagrangian is invariant under the transformation 

--, e-e~, ¢~ --, ~ e e  

for/3 4:/3(x). For/3 =/3(x) we restore invariance as before by using the new 
Lagrangian 

£Z= ~c7u(8 " - gOu)t) + £#(Qu) (3.1) 

where the quaternionic gauge field Q** transforms as in equation (2.7). The 
Lagrangian (3.1) is invariant under local gauge Sp(t,  Q) transformations. 

4. Weinberg-Salam Model with Quaternionie Fields 

Suppose we now take the known leptons e, u e, p, and p, and form the left- 
and right-handed fields 

1 - 7s 
e L = e,  

2 

1 +Ts 
e R - e, 

2 

Mso we have 

1 - 7s / & -  p 
2 

1 +Ts 
PR-  ~ /1 (4.1) 

1 - "Ys 1 - 7s 
p L e -  2 re, VL**- 2 V. 

We could form all the four left-handed fields into a quaternionic spinor field: 

L = eo~o + ea~l + e2qa2 + e3~3 (4.2) 

where we could for example make the identification 

~o = UL, ~1 =eL 
(4.3) 

~= = ~L", ~ 3  = ~L e 

Then we could write 

L = EL (4.4) 
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EL = ~o + i~a = PL + ieL = PL- + ieL- 

E~ = ~o - i~1 = P~ - ie~ = pL + -- ieL + 

VL = ~2  + i ~ 3  = VI, U + i~L e = V~- + ivy- 

The quaternionic conjugate field becomes 

- ~  ~N -(G-iG) 
where 

We form also the field 

ffL = PL -- ieL = ~-L - i~L 

* - *  ie~ .E+ ieE E Z - U L  + = 

¢2_ +i~3]  

(4.5) 

ER = UR + ieR = R 

Then choosing our gauge group as the direct product group Sp(1, Q) ® U(i), 
we classify the field L into the defining representation of Sp(1,  Q), while the 
right-handed field ER we classify as a singlet under U(1). Finally we also intro- 
duce a quaternionic scalar Higg's meson ¢(x) given by equations (2.1) and 
(2.1a). 

The transformations of these fields under Sp(1,  Q) ® U(1) will then be as 
follows: 
Under Sp(  l ,  Q): 

L -+e-eL 

R -+ R 

L -+ eiAL 

R ~ e i A R  

3 
= ~(x)  = Y e ~ f f x )  

i=1 

(4.6) 

Under U(1): 

where 

and A = A ( x ) .  
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Working now with these fields L, R, and ~p we write down the Lagrangian 

~? = LcTxO~,L + RTx3KR + 3x~0c37d0 - V(tp%) + 2~in t (4-.7) 

where ~int  is a suitable interaction term involving L, R, and ¢ in interaction. 
It is understood that in equations like (4.7), traces will be taken where appro- 
priate in order to obtain the final Lagrangian in a suitable form. 

To obtain a Lagrangian that is invariant under local gauge Sp(1, Q) ® U(1) 
we again use the minimal substitution principle: 

LCTx3x L ~ LcTx(3x - gQx - g'Bx)L 

Rrx~xR -" Rrx(~x - g%,)R (4.8) 

3x~p°a~,So + [3~,~ c + gsoeQa + ig'B~,~o c] [ax~o - gQx~ - ig'Bxsol 

where B x and Qx are two gauge fields associated with U(1) and Sp(1, Q), 
respectively. We have 

3 ( iAx' _ ( A ~ + i A ~ ) )  
Q = ~ e.glxi= (4.9) 

i=I A ~  - iAQ - i A ~  

These gauge fields transform as follows under Sp(1, Q) ® U(1): 
Under Sp(1, Q) ® U(1): 

Qx + Q~ = e-~Qxe ~ _ (1/g)e-¢(Ox~)e ~ 

Q~ ~ (Q{) '  = e'CQ{'e~ + (1/g)e-C(Oxt3)e ~ 

Under U(1 ): 

& - , &  

Qx ~ Qx 

BX -+ B~, = B a -- (1/g')O;vA(x) (4.10) 

We shaI1 sometimes use the notation 

Bxl = iBa 

The gauge-invariant Lagrangian becomes 

~a = ~lepton + ~scalar + ,-~int + ~o~a(Q~) + ~C~°(B~) (4.11) 

where 

~ p t o ~  = Tr {UVx(~x - gQ~. - g'Bx)L} 

+ 2/~'yX(3 x -- g~Bx)R (4.12) 

5¢sealar = Tr ( [3x~p c + g¢CQ?, + ig,Bx~Ct [3x~ _ gQ~dP - ig'Ba~ ] } 

- v ( ~ , ° ~ )  ( 4 . 1 3 )  
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~ ( B x )  = -~fxufxv (4.14) 

with 

fx~ = ~xB~ - 0~Bx 

while £P(Qu) is given by equation (2.9). 
We now break the Sp(1, Q) ® U(1) symmetry sponaneously as in section 

2, by substituting equation (2.11) into equation (4.11). 
We get the following results: 

£asealar = OxpOXp + 2p 2 (g2(A? +/Ap)(Ax z - iA?) 

+ (gAx 1 + ig'Bx)(gA2 - ig%,)} - V(~oc~o) (4.15) 

Suppose we now define the following fields: 

W~ = A ~  - iA~, W;  = A ~  + ia~  

o r  
_ 1 + A~? - ~.(W~ + W~), iA~ = ½(We - Wx +) 

or  

Z ° - gAxl + g'Bxl- A~ cos 0 + Bx I sin 0 

2 ?  -gAxl -g 'B~  _Axlco s 0 - B x  1 sin 0 
,/42 +g;2 

Ax - grAxl - gB~ _ Ax 1 sin 0 - Bx 1 cos 0 
X / ~  + g ,2  

~ _g:4~ +gB~ 
X ~ + g ' 2  - A x l s i n 0 + B ~ c ° s 0  (4.16) 

Ax 1 = Z  ° cos0 +Ax sin0, B~ =iBT, =Z?  sin0 - A  x cos0 

where tan 0 = g'/g. 
Putting (4.t6) and (2.11) into equation (4. t 5) we get finally 

~C~scalar = ½3xX~xX - ¼~kX 4 - -  ~k~X 3 - -  )kT/2X 2 
(4.17) 

+ (x + ~)~ ~2 wZwx- + (42 +g,2)zoz~o ? 

This shows that three vector mesons have acquired mass, while the fourth 
vector meson Ax remains massless. The massless vector meson Aa is expected 
to be identified with the photon. 

Next we evaluate ~C'°lepton given by equation (4.12). 
We have 

~Q~lepton = Tr(L°'YxOx L) - gTr(LCTxQx L) - g'Bx{Tr(LCTx L) + 2/~3'k R} 

+ 2k'yxOaR 
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Using equations (4.4), (4.5), (4.9), and (4.16) we get 

Tr(LC%,L) = ELT~EL + ~ 7 x v ~  + PLTXVL + F,~TxE~ 

Tr(LCTxQxL) = (ELTxEL -- v~Txv~ + ~LTXVL - - / ~ 7 k E ~ ) / A x  1 

+ (ELv~.EZ - &~'~.~)Wx-+ ( ~ Z ~ &  - ~? ,~ .~)W;  

We then get that 

~lepton = ELTk0kEL + 2PR'YxOxER + E~3`kOXE~ + VLTXOXVL + VLTf~OkPL 
- * 

2igg'A k 

i z  o 
+ vLTXVL + ~r"rxvL) + ~ ~g'~(&~/x&. + 2&~'~.ER + ~:Zv~EZ -* * 

- g2(EL'rxE L - E~TkE~L + PLTXV L -- Pl~TXv~O) (4.18) 

Finally substituting the notations of equations (4.4) and (4.5) into equation 
(4.18) (and dropping a factor of 2) we obtain 

1 + T s  1 +Ts 
~q~lepton = ~'Y kokv + eTxOxe - i~'rk ~ - -  Ok/l + i/~7x - ~ - -  0xe 

- 1 - 3 ' 5  + 
-- iPTX ~ Ve -- ,T ,k  ~ li + + iVeTX ~ - - -  t l 

+i~uyk 1 ~7~e+ +Peyk 127Se +} 

-- -- 1 -- 7sv + 2  lg*g + ~-+"& t-7sv2 ,, -e+3`a l~ue-ys +ie+yx - ~  - -  u 

- i ~ " / x  2 

igg'Ax 
(£Yx/~ + ~')'xe + i£Txe - i~'7xtx + PLTXUL } 
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iZ?  f , J _  1 + 7s e 1 + 3"s 
+ ~ tg ~laT~la + &Yxe + iftTX 2 - iOTa ~ 1 2  

- iO~/X I l - iPe'gX - T -  uu + i~uTx 2 

Next we write down ,~int. We choose 

S¢int = f{Tr(R ~oL) + Tr(LC~oR)} 

where 

so that 

Tr (/~ ~L) = p(t} o - i~1). (Co - 7s¢o) 

Tr(L%R) = P ( G  +VsG) "(Co +i~1) 

~int  = 2fP~o~)o + ifpG(1 + vs)qJl 

~CPin t = ~¢/277f~ld + (i/~¢/2)f~(1 + 7s)eX + ' ' "  

That is, 

(4.20) 

This equation would imply that as a result of the spontaneous symmetry breaking, 
the muon acquires a mass while the electron remains massless. Since the physical 
mass of the electron is nearly zero compared to that of the muon, the above result 
appears to be in the right direction. One may in fact interpret our model as a 
zeroth-order model in the sense of Weinberg (1972a, b); also Georgi and Glashow 
(1972, 1973). In this case, one considers that the small finite mass of the 
electron is generated by radiative processes that are superimposed on the zeroth- 
order lepton mass spectrum. The latter state of affairs is considered to arise as a 
direct consequence of the spontaneous symmetry breaking. However, it is still 
an open question how many loops one would need to consider in order to actually 
obtain the empirical electron-muon mass ratio 

me/m u ~-- ~o~ 

where a is the fine-structure constant. This point needs closer study. 

5. Discussion 

Compared, however, to the original Weinberg-Salam model, (Weinberg, 1967 
and 1971; Salam, 1967) it is obvious that our model incorporates electrons and 
muons in a more natural way. The muon terms, for example, are not added by 
hand as in the Weinberg-Salam model. Also while, in the Weinberg-Salam model, 
the electron-muon mass difference cannot arise directly from spontaneous 
symmetry breaking, but by an arbitrary choice of different coupling constants 
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in the interaction terms, we find that ,  in our model,  the process of  spontaneous 
symmetry  breaking leads directly to a massive muon and a massless electron. 
The quaternionic model  is therefore a zeroth-order gauge model. 

It is in fact the most  economical zeroth-order gauge model,  compared to  other 
recently proposed zeroth-order gauge models for e lect ron-muon mass ratio 
(Frenkel  and Ebel 1973; Mohapatra 1974; Fri tzsch and Minkowski 1974). 

The quaternionic model  is, however, not  without  its own problems. If  we 
consider the total  Lagrangian equation (4.11), which is obtained by adding the 
pieces (4.17), (4.19), (4.20), (4.14), and (2.9), we observe the appearance of  a 
~u7 vertex. This term cannot be readily removed, although reasonable models of 
neut r ino-photon  vertex can be constructed.  In addit ion to the problem of  ~u7 
vertex, we have also that some terms in our kagrangian violate the separate 
conservation laws of  electron and muon numbers. This feature is perhaps not  so 
objectionable in so far as the existing experimental  tests are not  ye t  sufficient 
to discriminate between various schemes (Marshak et al., 1969) that  have been 
proposed for conservation of  lepton numbers. Finally, neutral current terms 
like ~Tx# and/27xe, which are present in the photon term, must also be killed 
since they  will otherwise lead to such unobserved processes as ~ -+ e + 7- They 
would also predict significant muon exchange contributions to conventional 
Compton scattering. At the moment ,  we do not  know how to refine the model  
in order to get over these difficulties. 
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